Regular Expression matching with Thompson-algorithm

Renata Hodovan
University of Szeged
Introduction

- Regular expressions
 - Searching patterns in strings
 - Validation
 - E-mail
 » ^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$
 - Phone-number
 » \+[0-9]{4}\/[0-9]{7} -> +3630/3422134
The Engine

- Regular expression implementation based on two major families of algorithms:
 - NFA (Non-deterministic Finite Automata)
 » (PERL, Ruby, Phyton, PHP)
 - DFA (Deterministic Finite Automata)
 » (grep, egrep, awk)
NFA

- Non-deterministic Finite Automata
- Recursive algorithm
- Only a single path at a time
- Backtracking
- „Pathological” cases
- PCRE, YARR

\[a^n a^n \rightarrow a^n b^n \]
Example: abbb to /abab|abbb/

Step 0. a b a b

Step 1. a b a b

Step 2. a b a b

Step 3. a b a b

Step 4. a b a b

Step 5. a b a b

Step 6. a b a b

Step 7. a b a b

Step 8. a b a b

Fails, backtracks
DFA

- Deterministic Finite Automata
- Store all possible states at the same time
- No backtrack
- Breadth first search
- Thompson-algorithm
Thompson-algorithm

- Introduced by Ken Thompson in 1960
- Used by UNIX system (grep, egrep, awk, etc.)
- Linear running time
- No "pathological" cases
- Using DFA instead of NFA
Example: abbb to /abab|abbb/
Thompson vs recursive

- Regex: $a^n a^n \rightarrow a^n$
- Input: 29-character string
- Perl (recursive): >60 sec
- Thompson: 20 micro(!)sec
ECMA’s restriction

- Pretend recursive algorithm
- Enumerate subpattern
- Backreferences
Finished tasks

- Converting NFA to DFA
- Both Interpreter and JIT
- They work, but haven’t finished
- No benchmarking yet
Thanks for your patience!