
Ref & PassRef
Efficient never-null pointers



Ref<T>

• Always points to an object 

• Always holds a strong reference to that object 

• Initialized with a T& or a PassRef<T> 

• Use .get() to access the T& 

• Doesn't need to do null checks in ctor/dtor



PassRef<T>

• Like PassRefPtr<T> but never 
null 

• Used to initialize Ref<T> 

• Must be sunk into a Ref<T> 
or explicitly dropRef()'ed 

• Doesn't generate null checks 
or calls ~T() like PassRefPtr



RenderPtr<T>
Simple owning pointer for renderers



RenderPtr<T>

• Basically an OwnPtr<RenderObject> 

• Calls RenderObject::destroy() instead of 
~RenderObject() 

• Goal is to move the rendering code to using smart 
pointers for ownership clarity and general safety


