For Better DOM Code

Ryosuke Niwa

C++ and JS Objects

C++ objects JS wrappers

e C++ objects define behavior .

e JS wrappers expose them to
JavaScript

Main DOMWrapperWorld

OMWrapperWorId for
extension

e |njected scripts have their own
DOM wrapper “world”.

C++ and JS Objects

e todS(node) to get a JS wrapper
e toWrapped(node) / jsNode.wrapped() to get C++ object

e (Cache main world’s wrapper via ScriptWrappable

Lifecycle of DOM Objects

e JS wrapper keeps C++ object alive

e Ref<> in JSDOMWrapper

* Two ways to keep JS wrappers alive

e Visit children

» Reachable from Opaque Roots

Common misconception

C++ objects do NOT keep their JS wrappers alive by default
class Some : RefCounted<Some> {

Ref<Other> m_other; // « JSOther will still go away
}

class Other : RefCounted<Other> { }

Lifecycle: Visit Children

JS wrappers

e JSCustomMarkFunction in IDL Main DOMWrapperWorld

GC | . - .
e Add JS*:visitAdditionalChildren in
v

JS*Custom.cpp

e Visit JS object kept by WebCore l

Lifecycle: Opaque Roots

JS wrappers

Main DOMWrapperWorld
GeneratelsReachable=Impl* or

CustomlisReachable in IDL

JSNode
5
. : o
addOpaqueRoot in 1 Visits --beseenee- \.i..., JSNode
visitAdditionalChildren \\ -.
\ o
\ ," /
\ e
*uat \ v v C!
JS*::isReachableFromOpaqueRoots o
2. Reachable? Node

Opaque Roots

Lifecycle: Concurrency

* Visiting & opaque root checks happen in non-main threads
 (Can’t make createWeakPtr or ref / deref RefCounted objects

e Can’t look up HashMap

Lifecycle: Common Cases

e Keeping JS object alive — Visit Children

e Store JSC::Weak<JSC::JSObject>
e ActiveDOMCallback for callbacks

e (C++ object relationship =& Opaque Roots

e Agree on opaque root; typically root Node

* Write thread safe code to get opaque root

Lifecycle: NodelL.ists

2. Reachable?

Lifecycle: DOM Nodes

DOMWrapperWorld

e Node is alive if it has refCount >
O or has parent node .
./

e Node increments Document’s
m_referencingNodeCount

e Document is alive if refCount > 0
or m_referencingNodeCount > 0

Lifecycle: DOM Nodes

DOMWrapperWorld

e Node::removedLastRef on
Element

A
e (ContainerNode::removeDetached
Children in ~ContainerNode

\

e Turn into flat linked list in deletion
queue

Lifecycle: DOM Nodes

e Document::removedLastRef() must clear any Ref / RefPtr to Node

 Not safe to traverse DOM tree during destruction

Node Insertion & Removal

e Node::insertedintoAncestor / removedFromAncestor

e (Called whenever node’s ancestor changes
e Either “this” or its ancestor got inserted or removed

e Don’t assume tree scope or document change

* No script execution in insertedintoAncestor or removedFromAncestor

e Will hit release assertion

* Use didFinishlnsertingNode instead

Node Insertion Order

e |nsertedintoAncestor called in tree order

e Only talk to nodes earlier in tree order

[\
e

Node Removal Order

e removedFromAncestor called in tree order \‘.
e Only talk to nodes earlier in tree order / \

Lifecycle: Delayed Use

e Asynchronous use of “this” - XHR, media, ...

e Make “this” ActiveDOMODbiject

e Asynchronous use of Node - MutationObserver,
ResizeObserver, ...

e GCReachableRef « This is a leak!

Lifecycle: ActiveDOMODbiject

e Async work — dispatchEvent on this .

A

e Reachable if hasPendingActivity is true readystatechange

\4

e Suspendable for back-forward cache .

DOMWrapperWorld

HTML5 Event Loop

e WindowEventLoop has been added
e WorkerEventLoop is coming

e WindowEventLoop is shared across documents of similar origins

Event Loop: In New Code

e Do NOT USE
e Timer / SuspendableTimer

e GenericEventQueue / GenericTaskQueue

