
EWK_Frame.h

Introduction
When using an application such as a browser to visualize some web content, firstly an User
Interface is needed in order to provide the functionalities and interactions the user may have
with. In this way, such application displays a main frame which purspose is to contain different
elements on the window and, of course, a second frame in which web content will be showed
and the user can interact directly with web elements.

So, for this case, the purpose of Ewk_Frame.h and Ewk_frame_private.h libraries is to provide
functions to work with when displaying html content in a browser is needed.

Dependencies

On the figure below, the libraries needed in Ewk_frame.h and Ewk_frame_private.h are shown
to give an aidea about which files muts be included in thoses dependencies.

First, it is important to know that these modules have dependencies within ewk_view.h &
ewk_view.cpp since the view is the extern part of the application wich will contain two frames
(as it is handle in such an aplication for browser): the main frame including menu bars and the
main html frame (the role of Ewk_frame).

Content
To start with the explanation about the use, first we have to know some of the functions can be
used from these libraries in order to make an implementation of them. For this explanation, the
most important functions will be handled to give an idea about this and which modules are
needes as well.

How does it work?
Once we have considered this, it is possible to focus on how functions work. Each function of
these libraries has one common argument: Evas_Object * o. This object represents such a
frame where events, content, and information are displayed (according to the html frame for the
browser).

Examples of definitions of functions:
EAPI Eina_Bool ewk_frame_stop(Evas_Object *o);
EAPI Eina_Bool ewk_frame_reload(Evas_Object *o);
EAPI Eina_Bool ewk_frame_reload_full(Evas_Object *o);
EAPI Eina_Bool ewk_frame_back(Evas_Object *o);
EAPI Eina_Bool ewk_frame_forward(Evas_Object *o);

It is important to mention that Ewk_view has two main frames: the one that is part of the
application running on the OS and the second one that is for the Html content. In this case, by
using functions belonging to the view library, it is easy to know how some functions are used,
by just calling the function from the view and passing just one of their frames to perfom some
of the functions commonly used for html content on the frame.

Figure 1.3 Some functions are shown. The argument is an Evas_Object called main_frame, used to display the
content or perform different behaviors.

Figure 1.4 Although these functions are implemented in the view, these make usage of frame's functions as
shown on the Figure 1.3

The above image describes that according to the common functionalities to go backward or
forward in the history depending on the visited web sites, we can go through this list by using
the frame for the html and the functions such as back or forward.

Figure 1.5 Reload and stop. Functions commonly used in Html frames

After defining a URI, which wil be the resource searched by the browser to display its content,
we can see that the same functions are involved inside the View as follows:

Figure 1.6 Functions to set or get the resource on the browser.

And as it was defined above on the browserCreate(“http://www.google.com”, app->userArgs)
function (Figure 1.5), this is the URI needed for the browser to start searching. An example of
it can be like follows:

Figure 1. 6 Part when the URI is specified on the html frame of the browser.

More Information

Main Frame
Begining with the functions about the frame it is important to notice that all the functions are
implemented on the WebCore:: which enables to respond to events (mouse, keyboard),
elements when rendering the html page (loaders, displayers) and some other elements that
allows us to get functionality.

There are some basic steps to consider using this library. Most of this, is based on some
examples provided by the WebKit sourcecode and were analyzed enough to understand the
sequence of the browser's steps.

So, firstly, we have to create a frame that will contain both menu bars with buttons for the
interaction with the user and the interface and the html frame to display content. So, a URI can
be specified to reach the resource or waits until the user enters the URI(on the URI bar). Once
it happened, the frame's functions such as load_content must perform its behavior. Considering
user's options to stop, reload or change uri, the external/internal frame must have
communication (Ewk_view) holding this frames to show the changes. When the content is
displayed, some events are implemented in order to response to some actions inside the internal
frame to manipulate it.

By using an special type of data (depends on Evas library) is possible to store and retrieve
information about the history or records from the visited uri's, (unless the private navigation is
activated which does not allow to store information while browsing) and here is when appears
those functions such as, backward, forward, navigation, etc.

There are other concepts called signals which are useful for transmission of notifications due to
certain kind of behavior to let the user know about it through the main view, and all this signals
may coccur, most of the times, when an error is produced when loading the page.

