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...CALLING 
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HAS SOME 
OVERHEAD

WE CALL INTO 
WEBCORE FOR EACH 

PAINT...
WE PAINT THINGS WE’VE 
ALREADY PAINTED WHEN 

SCROLLING BACK

CLEVER TILING CAN
SOLVE THESE 
ISSUES
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Cache and join paint 
events

How to accomplish this
What is tiling anyway?

Cache what you paint in image tiles

Blit the existing tiles on scroll

Don’t paint non-visible dirty areas immediately

Avoid too many small tiles, due to the cost of 
constructing GraphicsContexts

This can be hardware accelerated!



My experiment
My basic algorithm

As an experiment, implement it on the WebKit side



My experiment
My basic algorithm

As an experiment, implement it on the WebKit side

Implemented only for QGraphicsWebView



My experiment
My basic algorithm

As an experiment, implement it on the WebKit side

Implemented only for QGraphicsWebView

Some changes needed elsewhere:

1) Render methods in abs. coordinates, without clipping



My experiment
My basic algorithm

As an experiment, implement it on the WebKit side

Implemented only for QGraphicsWebView

Some changes needed elsewhere:

1) Render methods in abs. coordinates, without clipping

2) Make ScrollView / FrameView send update events 
    outside of the viewport



My experiment
My basic algorithm

As an experiment, implement it on the WebKit side

Implemented only for QGraphicsWebView

Some changes needed elsewhere:

1) Render methods in abs. coordinates, without clipping

2) Make ScrollView / FrameView send update events 
    outside of the viewport

Why not just make viewport == contents size?



My experiment
My basic algorithm

As an experiment, implement it on the WebKit side

Implemented only for QGraphicsWebView

Some changes needed elsewhere:

1) Render methods in abs. coordinates, without clipping

2) Make ScrollView / FrameView send update events 
    outside of the viewport

Why not just make viewport == contents size?

Because we use WebCore for drawing our scrollbars
and that makes a whole lot of sense ... theming ... etc
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If not in cache, paint the dirty area as a tile, enlarge it 
slightly (64 pixels in each direction)

Each tile stores it’s covered area as well as a dirty area.

Put in cache, blit to screen

On update, we update the dirty area of the intersected 
tiles. If it has such an area already, the bounding rect
is uses as the new area. Remember, we try to avoid
calling into WebCore unnecessarily

Furthermore, if the dirty area == covered area, remove it from cache
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Basic algorithm

On update and scroll: 

Update all tiles, blit what is in the cache, create tiles for 
what is not

That is more of less the basic algorithm, but there are 
some problems.
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Scrollbars

Paint the scrollbars separately, make sure updates to 
them do not invalidate any tiles. These are not tiled in 
my implementation!

When enlarging we much make sure that we don’t 
cover an area already in the cache, so I need to know
what area is cached.

Enlarging tiles
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Problems

Cache growth

Storing the whole page in the cache would be 
expensive, memory-wise, so the cache has a max size.

The solution is to give each tile an age and increase 
the age when not used, and reset it when being blit.

Before adding a new tile, we reserve the needed 
space for it, removing the oldest tiles.
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So what is the preliminary results?
Did it really pay off?

Benjamin wrote a simple scrolling test app, and the 
results are quite promising.

QWEBVIEW PERFORMS 
RESONABLE, DUE TO THE 

XCOPYREGION

But we had some surprises as well.

NON-TILED 
QGRAPHICSWEBVIEW IS 
EXTREMELY SLOW

THE TILING IS FASTER!
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Where are se’ numbers?

Amazon book page

Back up your claims dude!

QWebView

QGraphicsWebView

Tiled QGraphicsWebView
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Milliseconds



Where are se’ numbers?

Wikipedia Qt page

Back up your claims dude!

QWebView

QGraphicsWebView

Tiled QGraphicsWebView

0 37,5 75,0 112,5 150,0

Milliseconds
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Can’t you do better than that?

That is why we are here ;-) Now let’s get on to the 
work!

More realistic test suite!

Ideas for improvement

WE CAN!

My data structures are not that good, nor profiled

Should be lower in the stack using WebCore constructs

Paint in another thread, not block WebCore



Thanks for listening

KENNETH ROHDE CHRISTIANSEN
ext-kenneth.christiansen@nokia.com
kenneth.christiansen@openbossa.org
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