
Considering Tiling for a
better User Experience

Kenneth Rohde Christiansen
WebKit Code Camp, Wiesbaden, December 2009

SOMETHING THAT I HAVE BEEN WORKING ON

SOMETHING THAT I HAVE BEEN WORKING ON

WHO AM I?

SOMETHING THAT I HAVE BEEN WORKING ON

WHO AM I? KENNETH R. CHRISTIANSEN

SOMETHING THAT I HAVE BEEN WORKING ON

WHO AM I? KENNETH R. CHRISTIANSEN WEBKIT REVIEWER

SOMETHING THAT I HAVE BEEN WORKING ON

WHO AM I? KENNETH R. CHRISTIANSEN WEBKIT REVIEWER
1+ YEAR WORKING WITH WEBKIT

SOMETHING THAT I HAVE BEEN WORKING ON

WHO AM I? KENNETH R. CHRISTIANSEN WEBKIT REVIEWER
1+ YEAR WORKING WITH WEBKIT
APP & FRAMEWORK DEVELOPMENT AT

3+ YEARS WORKING WITH

SOMETHING THAT I HAVE BEEN WORKING ON

WHO AM I? KENNETH R. CHRISTIANSEN WEBKIT REVIEWER
1+ YEAR WORKING WITH WEBKIT
APP & FRAMEWORK DEVELOPMENT AT

3+ YEARS WORKING WITH
NOKIA TECHNOLOGY

INSTITUTE, INdT, RECIFE, BRAZIL

A TILED
BACKING STORE

What are the problems we are facing today?
The background for considering tiling

WE PAINT THINGS WE’VE
ALREADY PAINTED WHEN

SCROLLING BACK

What are the problems we are facing today?
The background for considering tiling

WE CALL INTO
WEBCORE FOR EACH

PAINT...
WE PAINT THINGS WE’VE
ALREADY PAINTED WHEN

SCROLLING BACK

What are the problems we are facing today?
The background for considering tiling

...CALLING
INTO WEBCORE

HAS SOME
OVERHEAD

WE CALL INTO
WEBCORE FOR EACH

PAINT...
WE PAINT THINGS WE’VE
ALREADY PAINTED WHEN

SCROLLING BACK

What are the problems we are facing today?
The background for considering tiling

FOR INSTANCE,
CONSTRUCTING GRAPHICS

CONTEXT IS QUITE
EXPENSIVE

...CALLING
INTO WEBCORE

HAS SOME
OVERHEAD

WE CALL INTO
WEBCORE FOR EACH

PAINT...
WE PAINT THINGS WE’VE
ALREADY PAINTED WHEN

SCROLLING BACK

What are the problems we are facing today?
The background for considering tiling

FOR INSTANCE,
CONSTRUCTING GRAPHICS

CONTEXT IS QUITE
EXPENSIVE

...CALLING
INTO WEBCORE

HAS SOME
OVERHEAD

WE CALL INTO
WEBCORE FOR EACH

PAINT...
WE PAINT THINGS WE’VE
ALREADY PAINTED WHEN

SCROLLING BACK

CLEVER TILING CAN
SOLVE THESE
ISSUES

What are the problems we are facing today?
The background for considering tiling

Cache and join paint
events

How to accomplish this
What is tiling anyway?

Cache and join paint
events

How to accomplish this
What is tiling anyway?

Cache what you paint in image tiles

Cache and join paint
events

How to accomplish this
What is tiling anyway?

Cache what you paint in image tiles

Blit the existing tiles on scroll

Cache and join paint
events

How to accomplish this
What is tiling anyway?

Cache what you paint in image tiles

Blit the existing tiles on scroll

Don’t paint non-visible dirty areas immediately

Cache and join paint
events

How to accomplish this
What is tiling anyway?

Cache what you paint in image tiles

Blit the existing tiles on scroll

Don’t paint non-visible dirty areas immediately

Avoid too many small tiles, due to the cost of
constructing GraphicsContexts

Cache and join paint
events

How to accomplish this
What is tiling anyway?

Cache what you paint in image tiles

Blit the existing tiles on scroll

Don’t paint non-visible dirty areas immediately

Avoid too many small tiles, due to the cost of
constructing GraphicsContexts

This can be hardware accelerated!

My experiment
My basic algorithm

As an experiment, implement it on the WebKit side

My experiment
My basic algorithm

As an experiment, implement it on the WebKit side

Implemented only for QGraphicsWebView

My experiment
My basic algorithm

As an experiment, implement it on the WebKit side

Implemented only for QGraphicsWebView

Some changes needed elsewhere:

1) Render methods in abs. coordinates, without clipping

My experiment
My basic algorithm

As an experiment, implement it on the WebKit side

Implemented only for QGraphicsWebView

Some changes needed elsewhere:

1) Render methods in abs. coordinates, without clipping

2) Make ScrollView / FrameView send update events
 outside of the viewport

My experiment
My basic algorithm

As an experiment, implement it on the WebKit side

Implemented only for QGraphicsWebView

Some changes needed elsewhere:

1) Render methods in abs. coordinates, without clipping

2) Make ScrollView / FrameView send update events
 outside of the viewport

Why not just make viewport == contents size?

My experiment
My basic algorithm

As an experiment, implement it on the WebKit side

Implemented only for QGraphicsWebView

Some changes needed elsewhere:

1) Render methods in abs. coordinates, without clipping

2) Make ScrollView / FrameView send update events
 outside of the viewport

Why not just make viewport == contents size?

Because we use WebCore for drawing our scrollbars
and that makes a whole lot of sense ... theming ... etc

My experiment
My basic algorithm

Basic algorithm

My experiment
My basic algorithm

Basic algorithm

If not in cache, paint the dirty area as a tile, enlarge it
slightly (64 pixels in each direction)

My experiment
My basic algorithm

Basic algorithm

If not in cache, paint the dirty area as a tile, enlarge it
slightly (64 pixels in each direction)

Put in cache, blit to screen

My experiment
My basic algorithm

Basic algorithm

If not in cache, paint the dirty area as a tile, enlarge it
slightly (64 pixels in each direction)

Each tile stores it’s covered area as well as a dirty area.

Put in cache, blit to screen

My experiment
My basic algorithm

Basic algorithm

If not in cache, paint the dirty area as a tile, enlarge it
slightly (64 pixels in each direction)

Each tile stores it’s covered area as well as a dirty area.

Put in cache, blit to screen

On update, we update the dirty area of the intersected
tiles. If it has such an area already, the bounding rect
is uses as the new area. Remember, we try to avoid
calling into WebCore unnecessarily

My experiment
My basic algorithm

Basic algorithm

If not in cache, paint the dirty area as a tile, enlarge it
slightly (64 pixels in each direction)

Each tile stores it’s covered area as well as a dirty area.

Put in cache, blit to screen

On update, we update the dirty area of the intersected
tiles. If it has such an area already, the bounding rect
is uses as the new area. Remember, we try to avoid
calling into WebCore unnecessarily

Furthermore, if the dirty area == covered area, remove it from cache

My experiment
My basic algorithm

Basic algorithm

My experiment
My basic algorithm

Basic algorithm

On update and scroll:

Update all tiles, blit what is in the cache, create tiles for
what is not

My experiment
My basic algorithm

Basic algorithm

On update and scroll:

Update all tiles, blit what is in the cache, create tiles for
what is not

That is more of less the basic algorithm, but there are
some problems.

My experiment
My basic algorithm

Problems

My experiment
My basic algorithm

Problems

Scrollbars

Paint the scrollbars separately, make sure updates to
them do not invalidate any tiles. These are not tiled in
my implementation!

My experiment
My basic algorithm

Problems

Scrollbars

Paint the scrollbars separately, make sure updates to
them do not invalidate any tiles. These are not tiled in
my implementation!

When enlarging we much make sure that we don’t
cover an area already in the cache, so I need to know
what area is cached.

Enlarging tiles

My experiment
My basic algorithm

Problems

My experiment
My basic algorithm

Problems

Cache growth

Storing the whole page in the cache would be
expensive, memory-wise, so the cache has a max size.

My experiment
My basic algorithm

Problems

Cache growth

Storing the whole page in the cache would be
expensive, memory-wise, so the cache has a max size.

The solution is to give each tile an age and increase
the age when not used, and reset it when being blit.

My experiment
My basic algorithm

Problems

Cache growth

Storing the whole page in the cache would be
expensive, memory-wise, so the cache has a max size.

The solution is to give each tile an age and increase
the age when not used, and reset it when being blit.

Before adding a new tile, we reserve the needed
space for it, removing the oldest tiles.

So what is the preliminary results?
Did it really pay off?

Benjamin wrote a simple scrolling test app, and the
results are quite promising.

So what is the preliminary results?
Did it really pay off?

Benjamin wrote a simple scrolling test app, and the
results are quite promising.

QWEBVIEW PERFORMS
RESONABLE, DUE TO THE

XCOPYREGION

So what is the preliminary results?
Did it really pay off?

Benjamin wrote a simple scrolling test app, and the
results are quite promising.

QWEBVIEW PERFORMS
RESONABLE, DUE TO THE

XCOPYREGION

THE TILING IS FASTER!

So what is the preliminary results?
Did it really pay off?

Benjamin wrote a simple scrolling test app, and the
results are quite promising.

QWEBVIEW PERFORMS
RESONABLE, DUE TO THE

XCOPYREGION

But we had some surprises as well.

NON-TILED
QGRAPHICSWEBVIEW IS
EXTREMELY SLOW

THE TILING IS FASTER!

Where are se’ numbers?

Simple painting

Back up your claims dude!

QWebView

QGraphicsWebView

Tiled QGraphicsWebView

0 2,5 5,0 7,5 10,0

Milliseconds

Where are se’ numbers?

Slashdot page

Back up your claims dude!

QWebView

QGraphicsWebView

Tiled QGraphicsWebView

0 25 50 75 100

Milliseconds

Where are se’ numbers?

Amazon book page

Back up your claims dude!

QWebView

QGraphicsWebView

Tiled QGraphicsWebView

0 22,5 45,0 67,5 90,0

Milliseconds

Where are se’ numbers?

Wikipedia Qt page

Back up your claims dude!

QWebView

QGraphicsWebView

Tiled QGraphicsWebView

0 37,5 75,0 112,5 150,0

Milliseconds

Can’t you do better than that?
Ideas for improvement

WE CAN!

Can’t you do better than that?

More realistic test suite!

Ideas for improvement

WE CAN!

Can’t you do better than that?

More realistic test suite!

Ideas for improvement

WE CAN!

My data structures are not that good, nor profiled

Can’t you do better than that?

More realistic test suite!

Ideas for improvement

WE CAN!

My data structures are not that good, nor profiled

Should be lower in the stack using WebCore constructs

Can’t you do better than that?

More realistic test suite!

Ideas for improvement

WE CAN!

My data structures are not that good, nor profiled

Should be lower in the stack using WebCore constructs

Paint in another thread, not block WebCore

Can’t you do better than that?

That is why we are here ;-) Now let’s get on to the
work!

More realistic test suite!

Ideas for improvement

WE CAN!

My data structures are not that good, nor profiled

Should be lower in the stack using WebCore constructs

Paint in another thread, not block WebCore

Thanks for listening

KENNETH ROHDE CHRISTIANSEN
ext-kenneth.christiansen@nokia.com
kenneth.christiansen@openbossa.org

mailto:ext-kenneth.christiansen@nokia.com
mailto:ext-kenneth.christiansen@nokia.com
mailto:ext-kenneth.christiansen@nokia.com
mailto:ext-kenneth.christiansen@nokia.com

